COMPUTATIONAL MODELLING OF CELLULOSE AND CARBON-BASED NANOWIRES USING FIRST PRINCIPLES DENSITY FUNCTIONAL THEORY
DOI:
https://doi.org/10.17605/OSF.IO/GTC96Keywords:
Nanomaterials, nanotechnology, nanowire, nanocellulose, carbon-based nanomaterial, Density Functional Theory, Hellman-Feynman TheoremAbstract
Nanomaterials play very important role in nanotechnology. Conducting investigations about their properties and applications require standard computational models that mimic their physical aspects. In this, paper, we designed a nanowire model of cellulose and carbon-based nanomaterials (H-doped CNT) with the aid of first-principles Density Functional Theory. All the structures were optimized until the convergence criterion of 10-08 au is reached. We made sure that the ionic forces between atoms are small enough in accordance with the Hellman-Feynman Theorem. For the cellulose, only two polymerizations with 12 C atoms, 20 H atoms and 10 O atoms are considered, forming a cellulose unit. We have seen that its structure is formed via beta-glycosidic bonds. For the carbon-based nanomaterial, we generated a pristine (9,9) carbon nanotube (CNT) and introduced substitutional H doping, making it an H-doped CNT. All the structures where then meshed, forming nanowires. This paper is designed for future researchers about the modelling of nanostructures.
Downloads
References
Ajayan, P. M., & Zhou, O. Z. (2001). Applications of carbon nanotubes. Carbon nanotubes, 391-425.
Alvanh Alem G. Pido. (2022). ENERGY BARRIERS OF N2 ADSORPTION ON SiNR USING NUDGED
ELASTIC BAND METHOD. International Engineering Journal For Research & Development, 7(1), 9.
https://doi.org/10.17605/OSF.IO/F8B2C
Alvanh Alem G. Pido. (2022). TOPOLOGICAL ANALYSES OF THE ELECTRONIC DENSITY OF H-
NbSe2 COMPLEXES. International Engineering Journal For Research & Development, 7(1), 7.
https://doi.org/10.17605/OSF.IO/NCS3V
Balasundaram, G., & Webster, T. J. (2007). An overview of nano‐polymers for orthopedic
applications. Macromolecular bioscience, 7(5), 635-642.
Berber, S., & Oshiyama, A. (2008). Atomic and electronic structure of divacancies in carbon
nanotubes. Physical Review B, 77(16), 165405.
Burke, K., Perdew, J. P., & Wang, Y. (1998). Derivation of a generalized gradient approximation: The
PW91 density functional. In Electronic density functional theory (pp. 81-111). Springer, Boston, MA.
Cantalini, C., Valentini, L., Armentano, I., Kenny, J. M., Lozzi, L., & Santucci, S. (2004). Carbon nanotubes
as new materials for gas sensing applications. Journal of the European Ceramic Society, 24(6), 1405-1408.
Esteve, J. G., Falceto, F., & Canal, C. G. (2010). Generalization of the Hellmann–Feynman theorem. Physics
Letters A, 374(6), 819-822.
Guldi, Dirk M., and Nazario Martin, eds. Carbon nanotubes and related structures: synthesis,
characterization, functionalization, and applications. John Wiley & Sons, 2010.
Harris, P. J. (2004). Carbon nanotube composites. International materials reviews, 49(1), 31-43.
Hoeng, F., Denneulin, A., & Bras, J. (2016). Use of nanocellulose in printed electronics: a
review. Nanoscale, 8(27), 13131-13154.
Kim, J. H., Shim, B. S., Kim, H. S., Lee, Y. J., Min, S. K., Jang, D., ... & Kim, J. (2015). Review of
nanocellulose for sustainable future materials. International Journal of Precision Engineering and
Manufacturing-Green Technology, 2(2), 197-213.
Liu, H., Zhao, L., Liu, Y., Xu, J., Zhu, H., & Guo, W. (2019). Enhancing hydrogen evolution activity by
doping and tuning the curvature of manganese-embedded carbon nanotubes. Catalysis Science &
Technology, 9(19), 5301-5314.
Moellmann, J., & Grimme, S. (2014). DFT-D3 study of some molecular crystals. The Journal of Physical
Chemistry C, 118(14), 7615-7621.
Nasr, S. M., Rabiee, N., Hajebi, S., Ahmadi, S., Fatahi, Y., Hosseini, M., ... & Webster, T. J. (2020).
Biodegradable nanopolymers in cardiac tissue engineering: From concept towards
nanomedicine. International Journal of Nanomedicine, 15, 4205.
Novoselov, K. S., & Geim, A. K. (2007). The rise of graphene. Nat. Mater, 6(3), 183-191.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I., ... & Firsov, A.
A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. nature, 438(7065), 197-200.
Petrushenko, I. K., & Petrushenko, K. B. (2019). Physical adsorption of hydrogen molecules on single-
walled carbon nanotubes and carbon-boron-nitrogen heteronanotubes: A comparative DFT
study. Vacuum, 167, 280-286.
Pido, A. A. G., & Pagcaliwagan, B. P. (2022). First principles calculations of the electronic properties of O-
and O2-NbSe2 complexes. International Journal of Computing Sciences Research, 6.
Politzer, P., & Murray, J. S. (2018). The Hellmann-Feynman theorem: a perspective. Journal of molecular
modeling, 24(9), 1-7.
Ren, Y., Qiao, Z., & Niu, Q. (2016). Topological phases in two-dimensional materials: a review. Reports
on Progress in Physics, 79(6), 066501.
Schnorr, J. M., & Swager, T. M. (2011). Emerging applications of carbon nanotubes. Chemistry of
Materials, 23(3), 646-657.
Shanmuganathan, R., Edison, T. N. J. I., LewisOscar, F., Kumar, P., Shanmugam, S., & Pugazhendhi, A.
(2019). Chitosan nanopolymers: an overview of drug delivery against cancer. International journal of
biological macromolecules, 130, 727-736.
Singh, S., & Ahmed, R. (2010, September). Vital role of nanopolymers in drilling and stimulations fluid
applications. In SPE annual technical conference and exhibition. OnePetro.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IEJRD

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.